From Earth's surface to hundreds of
kilometers deeper than oilmen drill, the Deep Carbon Observatory (DCO)
is investigating the surprising quantity of carbon in the deep, dark
Earth beyond photosynthesis.
The program is investigating deep carbon's movement in the slow convection of the mantle, the percolating fluids of the crust, and the violent emission from volcanoes. It searches for the ancient origin of the deep carbon, and the formation and transformation of its many forms, ranging from gas and oil to diamonds and deep microbes.
Ninety percent or more of Earth's carbon is thought to be locked away or in motion deep underground-a hidden dimension of the planet as poorly understood as it is profoundly important to life on the surface, according to scientists probing the world's innermost secrets in the decade-long, $500 million project.
In a landmark volume, DCO scientists say estimates of carbon bound in the metallic core alone range from 0.25 to 1 percent by weight. If 1 percent proves correct, the core by itself sequesters four times more carbon than all known carbon reservoirs in the rest of the planet-and 50,000,000 times as much as that held in the flora and fauna on Earth's relatively wafer-thin skin far above.
Studies of meteorites suggest that the material that first formed Earth contained about 3% by weight carbon. Confirmed sources of Earth's carbon, however - life, carbonate rocks like limestone, and carbon dioxide in the oceans and atmosphere - sum to only about 0.1% carbon content.
"Where is Earth's missing carbon?" asks Robert Hazen, Executive Director of the DCO, a global collaboration emerging as the largest ever conducted in this domain of science. "Significant amounts may be locked into minerals and melts in the mantle and core. If so, can we now find them?"
The DCO is expected to create profound new understanding of this planet and others, shedding unprecedented light on Earth's highly active subterranean environment -- the globe's oldest ecosystem -- including the secrets of volcanoes and diamonds, sources of oil and gas, and the origins of life itself.
The program is investigating deep carbon's movement in the slow convection of the mantle, the percolating fluids of the crust, and the violent emission from volcanoes. It searches for the ancient origin of the deep carbon, and the formation and transformation of its many forms, ranging from gas and oil to diamonds and deep microbes.
Ninety percent or more of Earth's carbon is thought to be locked away or in motion deep underground-a hidden dimension of the planet as poorly understood as it is profoundly important to life on the surface, according to scientists probing the world's innermost secrets in the decade-long, $500 million project.
In a landmark volume, DCO scientists say estimates of carbon bound in the metallic core alone range from 0.25 to 1 percent by weight. If 1 percent proves correct, the core by itself sequesters four times more carbon than all known carbon reservoirs in the rest of the planet-and 50,000,000 times as much as that held in the flora and fauna on Earth's relatively wafer-thin skin far above.
Studies of meteorites suggest that the material that first formed Earth contained about 3% by weight carbon. Confirmed sources of Earth's carbon, however - life, carbonate rocks like limestone, and carbon dioxide in the oceans and atmosphere - sum to only about 0.1% carbon content.
"Where is Earth's missing carbon?" asks Robert Hazen, Executive Director of the DCO, a global collaboration emerging as the largest ever conducted in this domain of science. "Significant amounts may be locked into minerals and melts in the mantle and core. If so, can we now find them?"
The DCO is expected to create profound new understanding of this planet and others, shedding unprecedented light on Earth's highly active subterranean environment -- the globe's oldest ecosystem -- including the secrets of volcanoes and diamonds, sources of oil and gas, and the origins of life itself.
No comments:
Post a Comment